Hierarchical Clustering of Commercial Chamomile Oil, A Quality Assessment Approach

BY
Amira Roushdy Khattab1, Mohamed Abou-shoer2, Fathallah Mohamed Harraz2, Maged Gaber El-Ghazouly2

FROM
1 Department of Pharmacognosy, Faculty of Pharmacy, Pharos University, Alexandria, Egypt and 2 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria.

\begin{center}
\textbf{ABSTRACT}
\end{center}

Chamomile oil has always been characterized and standardized in many compendial and non-compendial monographs as configured by the specified critical values for few particular constituents such as the bisabolol oxides, (−)-\textalpha{}-bisabolol and chamazulene. However, tagging the oil quality by its content of a limited number of components oversimplifies not only the process of estimating the oil purity but also the process of assessing its potency, and hence; the wholeness-value of the material would not be treasured. In this study, an evaluation of the commercially available chamomile oil was conducted using two different chromatographic techniques (TLC and GC) and assisted by chemometrics while not being endured or bound by the former quality-curbing markers. An innovative tool for visualizing the oils compositional-quality has been developed via merging the analytical concept of HCA with DE-TLC and GC profiles which will be of value in discriminating between the various quality grades of the analyzed oil samples in a holistic rather than a reductionistic approach.

\begin{center}
\textbf{INTRODUCTION}
\end{center}

The past few decades have witnessed an exploding market of phyto-pharmaceuticals where herbal preparations are booming and rapidly evolving all over the globe. The wonder plant chamomile has been recognized and gained its popularity and importance from traditional and folkloric practices. Unsurprisingly, the characteristically blue chamomile essential oil is considered as one of the most notable phytochemical component accepted as a phyto-pharmaceutical product. Chamomile oil is produced conventionally by steam distillation as endorsed in many pharmacopoeias. It incorporates several chemical class entities including sesquiterpenes (\textalpha{}-bisabolol known as levomenol, and bisabolol oxides A & B (≤78\%), farnesene (12-28\%) and chamazulene (1-15\%)); and polyacetylene derivatives, e.g. spiroethers (cis/trans-en-yne-dicycloethers (8–20\%)) (McKay and Blumberg, 2006). Reports on chamomile oil quality assessment have cited the use of some physical parameters such as color, solubility, relative density, viscosity and refractive index, as valuable parameters to judge the oils quality (Mihailo \textit{et al.}, 2007 and Cioanca \textit{et al.}, 2010). The deep blue colored chamazulene was also believed to be an indication of the high oil quality (Orav \textit{et al.}, 2010). Several analytical techniques
were put forth in the literature for the qualitative and quantitative assessment of the oil. These include elemental micro-analysis, liquid sampling mass spectrometry (LS/MS), TLC, GC-MS, and profiling by UV/VIS, IR and NMR (Mihailo et al., 2007). In addition, an enantioselective HPLC method was developed for the separation of the four stereoisomers of α-bisabolol and a RP-HPLC method was reported to separate the isomeric en-yne-dicycloethers and chamazulene (Franke and Schilcher, 2005).

The qualitative and quantitative chemical characteristics of chamomile oil have revealed the existence of four different chamomile chemotypes, in terms of their essential oil composition (Salamon, 2009 and Rubiolo et al., 2006). Nevertheless, the British and European pharmacopoeias have declared in their chamomile oil monographs that only two different types of chamomile oils are characterized; which are either rich in bisabolol oxides, or rich in (-)-α-bisabolol (European Pharmacopoeia, 2008 and British Pharmacopoeia, 2010). Unfortunately, this statement is not in accordance with the previous practical findings and can't be adopted as differentiating-quality-parameter as it will not account for or preclude other chemotypes. The British pharmacopoeial monograph on chamomile oil, for instance, assesses the chamomile oil qualitatively by TLC and quantitatively by GC for its content of bisabolol oxides, (-)-α-bisabolol and chamazulene. A common misconception generally encountered in the evaluation of natural products is that the material is usually standardized according to specified critical limits of only few constituents. Chamomile oil quality is normally assayed by measuring only the percentages of few components which are 29-81% of bisabolol oxides, 10-65% of (-)-α-bisabolol and ≥1.0% of chamazulene while overlooking any contribution from the content of other naturally occurring constituents. More significantly and in addition, the specified values fall in wide ranges which are not, anyhow, adequately decisive to express quality. Furthermore, when quality is labeled by specifying few limits for small number of components, it would, certainly, be insensitive to some products that can be artificially or deliberately "tuned" by enrichment or spiking to meet the test values. Accordingly, not only the purity can't be assessed but also the potency or wholeness, of the preparation can't be envisioned especially when it is flawed.

As a rule, nature does not furnish products in a consistent, standardized composition. Accordingly, the standardization and evaluation of a particular herbal medicine should realistically imply strict and detailed quality control checks which can efficiently guarantee its consistency within an acceptable flexible range for natural variation. This can be attained only through using stringent chemical profiling procedures that appreciate the holistic nature of the botanical products. Undoubtedly, multivariate analysis (MVA) now poses as the only sound approach to explore and put into practice the merits of the holistic setup to compose the complete formula towards a satisfactory analytical protocol for the natural products evaluation.

Principal component analysis (PCA) of the 1H-NMR spectroscopic data of chamomile flower extracts was employed as a tool to express the compositional variability arising from different geographical localities, adulteration, methods of sample handling (extraction methods, and drying processes) and material quality in terms of the percentage of the desired plant part (Wang et al., 2004), in addition to the discrimination between the flower head of Matricaria recutita L. and its common adulterants which are Anthemis cotula L. and Chamaemelum nobile L. (Daniel et al., 2007). Moreover, GC assisted by PCA was deployed in the differentiation between
the different chemotypes of chamomile (Rubiolo et al., 2006). Furthermore, a cluster analysis on the basis of ATR-IR data of chamomile oils was reported to be also indicative to the different chamomile chemotypes and also the manufacturing processes (Schulz et al., 2004).

The present study is devoted to introduce the application of multivariate analysis in the domain of analyzing the chamomile oil as a raw material in the pharmaceutical industry in order to profile its chemical composition and meticulously reveal its quality attributes.

METHODS - EXPERIMENTAL DATA

Oil samples

Fifteen different chamomile oil samples were collected from eight separate local manufacturers (A, B, C, D, E, F, G and H). Additional four chamomile oil samples corresponding to suppliers (I and J) were consumer-packed products purchased from the local market. Different batches of the samples obtained from the same manufacturer have been assigned numbered letter codes.

One chamomile oil sample K was produced in our laboratory by steam-distillation of the commercially-available raw material in herbal stores as described in the EP (2008). Samples A and B4, discretely, were oils with old manufacturing dates.

Reagents and Apparatus

- Solvents; methanol, ethanol, dichloromethane (CH₂Cl₂), ethyl acetate (EtOAc), and toluene, and other chemicals as sulfuric acid and vanillin are analytical grade, and anisaldehyde (Loba, Chemie, PVT, LTD) reference material.
- Chamomile oil sample solutions used in TLC analysis were prepared as 4% (v/v) solutions in MeOH while their solutions used in GC analysis were prepared as 4% (v/v) oil methanolic solutions containing 1% anisaldehyde.
- Vanillin-sulfuric spray reagent was prepared by dissolving 1.5 gm vanillin in 2% ethanolic sulfuric solution.
- The solvent-system employed for TLC was CH₂Cl₂: Toluene: EtOAc (60:38:2).
- TLC analysis Equipment: Linomat CAMAG TLC sample applicator; Syringe (100µL, CAMAG); Twin- trough TLC chamber for 20X20 cm plates from CAMAG; TLC atomizer; Digital camera, Canon, PowerShot SX 100 IS, 8 MEGA PIXELS, 10X optical zoom was used for capturing images for the sprayed chromatograms. TLC plates-20X20 cm with 0.25 mm thickness, silica gel 60 F₂₅₄ with aluminum support (E. Merck, Darmstadt, Germany).

Software

- The digital images of the TLC chromatograms were appropriately processed using the image analysis software "Sorbfil TLC videodensitometer® version 2.0".
- The appropriately processed TLC and GC output data were studied by multivariate analysis software program, Unscrambler® X 10 from CAMO (Computer Aided Modeling, AS, Norway).
TLC analysis

TLC analysis was performed by applying accurate volumes (4 µl) of the chamomile oil methanolic solutions on 20X10 cm TLC silica gel plate as 4 mm bands, 4 mm apart and 1cm from the edge of the plate, using the CAMAG TLC applicator. The plates were, then, developed for a distance of 9 cm in a chromatographic jar saturated with the mobile phase. The plates were then air-dried and visualized by vanillin-sulfuric reagent. The plates were heated at 150 ºC for 2 min. TLC images were captured by the camera at a fixed distance of 19 cm.

GC analysis

GC analysis was performed using gas chromatograph "Hewlett Packard" Model 5890 Series II, equipped with flame ionization detector, split/splitless injector and a 15 m HP5 column, 0.32 mm ID, 0.25 um film thickness. The carrier gas was high purity nitrogen and its flow rate was adjusted at 10 ml/min. Samples of 0.1 µl of the prepared chamomile oil methanolic solutions, containing anisaldehyde as an internal standard, were manually injected using split ratio of 1:10. The injector temperature was set at 200 ºC and the detector temperature was maintained at 260 ºC. The oven temperature was started off at 60ºC and programmed to increase at a rate of 10 ºC /min up to 170 ºC followed by a rate of 15 ºC /min to 200 ºC. Peak areas and retention time was measured by electronic integration with the HP 5890 Series II integrator of the ChemStation software.

Data handling

TLC

- Multi-spectral scans were performed over the entire digital images of the TLC chromatograms producing a matrix consisting of the area under each peak recorded in the densitogram of each chamomile oil sample.

GC

- Each gas chromatogram was divided into six segments, containing all the characterizing peaks of the chamomile oil. The chromatographic relative normalized peak areas (calculated by using the internal standard peak area as the reference area scale) in each chromatogram were used to construct the peak area matrix.

The applied chromatographic techniques were designed to put forward an educated guess that can picture, judge and guarantee its compositional integrity or profile. Multivariate analysis was employed to disclose the embedded information in the various generated data sets in order to reveal specific quality measures of the oil.

RESULTS

The TLC chromatogram image captured by the digital camera depicted in (Figure 1a) was appropriately processed and digitally converted into its corresponding densitograms by Sorbil videodensitometer® software program. The densitometric representations of all the oil samples, each oil in its respective track, were overlaid in (Figure 1b). Initially, the digitally-produced peak areas for bisabolol and its oxides in
each sample were used to comparatively rank the oils according to their content of the markers as depicted in (Figure 2). Subsequently, the comprehensive similarity between the different chamomile oil samples was worked out by Hierarchical cluster analysis (HCA) using the Ward's algorithm, and were portrayed in the dendrogram shown in (Figure 3).

The reproducibility of the technique is secured by repeating the analysis on the same day and on different days to ensure the consistency and precision of the applied method and, consequently, the information abstracted from the plate. Besides, the identity of many of the resolved spots was adequately identified by comparing their relative R\textsubscript{f} values and color with those mentioned in the chamomile oil monograph (Wagner and Bladt, 2001).

GC

The generated data matrix for the normalized peak areas was used to construct a classifying dendrogram, through HCA analysis using the same parameters used before, and the compositional pattern of each sample for its volatile components was used to show its profile next to its corresponding class as depicted in (Figure 5).

When the oil samples were arranged according to their content of a specific marker, (Figure 2), different sample orders were attained in each time. Therefore, it can be concluded that the inherent variability within the different chamomile oil samples due to the use of one marker in each time was obviously incompetent in defining their quality and one may wonder which one of the chamomile oil metabolites is a reliable marker in defining the oils quality.

Evidently, comprehensive MV analysis of the oil samples would represent a plausible approach to expand the limited aptness of the reductionistic approach. This issue is basically tackled by unsupervised pattern recognition methods for exploratory purposes to deal with the high dimensionality in the various datasets. A hierarchical clustering is employed herein as a valuable statistical tool for searching objects with similar attributes in a given data set.

The dendrogram portrayed in (Figures 3) has sorted out the oil samples into five component-variability-dependent clusters, I-V, without any indicative measure to categorically grade the quality of the different oil samples. Since TLC analysis of the different chamomile oil samples can be considered as a quality-indicating-tool, it has only pointed out that I\textsubscript{1}, I\textsubscript{2}, J\textsubscript{1} and J\textsubscript{2} samples are poor in quality. However, TLC remained less efficient in differentiating between the different quality-close samples (as a compositional trait) while taking into consideration the natural variability of the components.

Accordingly, the newly developed approach for visualizing the oils compositional-quality grades via merging the analytical concepts of HCA and TLC, dendrogram in (Figure 3), have yielded a reliable and more informative outlook that clearly relates their relative quality grades guided by their corresponding compositional profiles.
The figure also reveals that members of **cluster I** (samples A, B4, H1 and H2) are shown to possess superior quality (highest content of all components) followed by the members of **cluster II** (samples G1, G2 and H3) whereas members of **cluster III** (samples B1, F, H4 and E) and **cluster IV** (samples C, B2, B1 and K) are considered to be of moderate quality grade and lastly the members of **cluster V** (samples I1, J2, J1 and J2) are of inferior quality grade. Moreover, A, F, G and H can now be safely described as "quality-oil-producing manufacturers" whereas I and J could be seen as non-trusted suppliers which are marketing inferior quality oils.

Secondly, since, clustering by TLC voids any indicator that gauges the olfactory attributes of such samples, in essence, as essential oils. GC analysis of the samples was conceivably exercised to reveal chemical profile of their volatile components as shown in (Figure 4). Similarly, a dendrogram was portrayed in (Figure 5), using the normalized-peak areas matrix, to rank the different oil samples according to their volatile chemical content. Seven quality subgroups were discovered where the clusters I-IV are of good quality grades; whereas the clusters V-VII are of inferior quality grade. The GC combined with HCA, unfortunately, has indicated that sample K is of poor compositional quality, which might be due to either the poor recovery of the oil from small amount of the raw material under the limited laboratory assemblage or the low quality of the herbal material. In addition, sample A was found to possess a low compositional volatile content which came in agreement with its history (as an aged sample).

As far as we can tell, TLC and GC outputs, analyzed by HCA, have almost displayed a comparable samples categorization but with different classification perspective. For example, when considering sample B1, TLC has failed to identify this oil within the quality-ranked samples and, in contrast, gave sample A a higher quality grade (c.f. GC) because of the TLC-illumination problem, despite of all the precautionary measures taken. However, GC has proven to be more discriminating in this regard and clustered sample A with inferior quality oil samples which showed lower compositional content of volatile components whereas sample B1 has attained the highest compositional quality (as illustrated in their respective gas chromatograms in (Figure 4).

CONCLUSIONS

The literature-reported methods for the evaluation of chamomile oil quality had mostly relied on determining the percentage of some marker compounds. Such reductionistic approach can be, with great ease, fraudulently manipulated in commercial samples by analyte-spiking. Besides, other common oil counterfeiting practices by addition of lower grade oils, aged oils, vegetable, mineral oils, which would adversely affect the oil purity, might be even harder to spot. A more comprehensive approach in judging the oils quality which considers the whole chemical compositional profile of chamomile oil would overcome this problem.

TLC analysis combined with HCA was proved to be considered as a quality-indicating as well as a grading-tool in the context of the oils compositional trait whilst the GC technique would reveal the olfactory attributes and their impact on judging the oil quality.

Moreover, once good quality oils has been identified, their chromatographic features could be modeled in an experimental template using Discriminant Analysis (DA) or
Soft Independent Modeling of Class Analogy (SIMCA) and electronically stored so that any future samples of unknown quality can be easily determined. The applied methodology is of added merits in identifying flaws arising from non-standardized methodologies of preparation, processing and storage conditions while taking into account the natural compositional variabilities within the samples.

The obtained results have also inspired us to re-examine the chamomile oil using UV and IR spectral profiling techniques to explore their clustering competence in defining the quality (in progress).

Figure (1): TLC plate image (a), DE-TLC Densitograms of the chamomile oil samples (b).
Figure (2): Arrangement of chamomile oil samples in a decreasing order according to their content of bisabolol oxides (a) and bisabolol (b).

Figure (3): Dendrogram of the DE-TLC data matrix of chamomile oil samples.
Figure 4: Gas chromatograms of the different chamomile oil samples (A-J).
Acknowledgment

The authors are deeply indebted to CAMO Software, Inc. for providing the license of Unscrambler® X 10 and generously extending it. Also the essential oils manufacturers, Flavogypt, Greatco, Hashem Brothers, International Aromatics, Kato Aromatic, Pharmatech, Phatrade and Royal for Herbs, are acknowledged for generously supplying us with the material under study.

التصنيف الهرمي لعينات تجارية من زيت زهرة الكاموميل، منهجية لتقسيم الجودة

لسادة الدكتوراه
أميرة رشدي محمد خطاب 1 - محمد أبراهيم أحمد أبوشعيرو 2 - فتح الله محمد حراز 2 - ماجد جابر الغزولي 2

مقدم
قسم العقاقير، كلية الصيدلة، جامعة فاروس بالإسكندرية
قسم العقاقير، كلية الصيدلة، جامعة الإسكندرية

تقدم هذه الدراسة منهجية جديدة لتقسيم عينات تجارية من زيت الكاموميل في السوق المصري باستخدام تقنية التحليل الكروماتوجرافي بال طبقة الرقيقة و كروماتوجرافيا الغاز بعد معالجة النتائج المستخرجة من هاتين التقنيتين بطريقة التحليل الكيميمترية وأهم ما يميز هذه المنهجية عن تلك المتبقية سابقاً بمعظم الطرق المعتمدة و المشروعة لتحليل زيت الكاموميل هو أنها تقدم صوراً تحليلية شمولية لجميع المركبات الطبيعية الموجودة بالزيت والتي تمثل النتائج المقدمة قدرتها على تمييز بين العينات مجال البحث فيما يخص الجودة و الفعالية بكفاءة أعلى من مجرد استخدام عدد محدود من المركبات الكيميائية كمؤشرات لضمان الجودة.

كما طرحنا المنهجية المقدمة كفية استثمار درجة الجودة لأي عينات مستقبلية من نفس النوع الذي تم دراسته وذلك عن طريق مقارنتها بنموذج معروف معبّر عن المواصفات الجيدة الواجب توافرها.