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Abstract

Major histocompatibility complex (MHC) molecules bind short peptides resulting from intracellular
processing of foreign and self proteins, and present them on the cell surface for recognition by T-
cell receptors. We propose a new robust approach to quantitatively model the binding affinities of
MHC molecules by quantitative structure-activity relationships (QSAR) that use the physical-
chemical amino acid descriptors E;—Es. These QSAR models are robust, sequence-based, and can
be used as a fast and reliable filter to predict the MHC binding affinity for large protein databases.
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INTRODUCTION

The ability to distinguish between foreign and self proteins is one of the most important
characteristics of the immune system. Short peptides resulting from intracellular processing of
foreign and self proteins form a complex with the major histocompatibility complex (MHC)
molecules, and T cells recognize the MHC-bound peptides. There are two classes of MHC
molecules: (i) MHC class I, which binds and presents to the T cells peptides derived from
endogenously expressed proteins that are degraded by cytosolic proteases, usually by the
proteasome; and (ii) MHC class |1, which presents to the T cells peptides derived mainly from
exogenous or transmembrane proteins, but also from cytosolic proteins that are degraded by
various proteases which originate from the lysosomal compartment. Peptides that bind to MHC
class I have a usual length of 8-12 amino acids, and are transported into the endoplasmic
reticulum by the transporter associated with antigen processing (TAP), where they bind to
MHC class | molecules. The MHC | molecule with bound peptide on the surface of infected
cells and tumor cells can be recognized by a complementary-shaped T cell receptor (TCR) of
CD8™ cytotoxic T cells (CTL), initiating the destruction of the cell containing the endogenous
antigen.

The structural descriptors used in quantitative structure-activity relationships (QSAR) have a
substantial contribution to a successful model. Because the present paper advocates a novel

group of physical-chemical descriptors [1] for the modeling of the MHC binding, we briefly
review the most important descriptors used in MHC QSAR. Lin et al. found that the isotropic
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surface area, ISA, and the electronic charge index, ECI, are effective descriptors for the QSAR
modeling of peptide ICgq for class | MHC HLA-A*0201 [2]. COMSIA molecular field
descriptors were successful in 3D-QSAR for peptide 1Csq binding to class | MHC HLA-
A*0201 [3;4], HLA-A2 superfamily [5], HLA-A3 superfamily (A*1101, A*0301, A*3101,
and A*6801) [5-7], and mouse class | MHC alleles H2-DP, H2-KP, and H2-KK [8]. In a similar
approach, CoMFA molecular field descriptors gave good predictions for the binding to HLA-
A*0201 [3]. A series of sequence-based descriptors were evaluated by Guan et al. in QSAR
predictions of binding affinities for HLA-A*0201 [9]. The first group of models used 93 amino
acid properties from the AAindex database [10], whereas the second approach tested the
principal component amino acid indices zy—z5 [11]. The study found that the QSAR models
obtained with z;—z5 have the highest predictivity. Doytchinova et al. compared three classes
of descriptors for their ability to predict peptide BLsg for HLA-A*0201 [12], namely a 20-
element binary encoding for each amino acid, the zy—z5 scale, and a collection of molecular
descriptors that included molecular connectivity indices, shape indices, electrotopological state
indices, hydrophobicity, polarizability, surface area, and volume. The predictions tests showed
that the best results are obtained with the simple 20-element binary encoding, followed by the
77-25 scale, whereas the molecular descriptors did not provide meaningful predictions. The 20-
element binary encoding approach [13;14] was extended to include also cross-interaction terms
[5;15-17], with good results for HLA-A*0201 [18], the HLA-A3 superfamily [19], and MHC
class Il alleles [20].

The heuristic molecular lipophilicity potential (HMLP) [21] was used by Chou and co-workers
to quantify the lipophilicity and hydrophilicity of amino acid side chains [22]. HMLP
descriptors were also used to model the binding affinity of class | MHC peptides [23] and for
QSAR studies of neuraminidase inhibitors [24]. A support vector machines regression
approach in the quantitative modeling of the peptide binding affinity for MHC molecules
[25] was applied by Liu et al. to model the peptide I1Csq for mouse class | MHC alleles H2-
Db, H2-KP, and H2-KK [26]. Each amino acid in a peptide was encoded with 17 physico-
chemical properties, such as polarity, isoelectric point, volume, and hydrophobicity. Genetic
function approximation and genetic partial least squares were used by Davies et al. to obtain
QSAR models for the binding level BLgq of 118 peptides with class | MHC HLA-A*0201
[27]. The QSAR descriptors for BLsg modeling represent peptide-MHC interaction energies
computed with AMBER. The average relative binding (ARB) matrix [28] is a quantitative tool
that was calibrated for the prediction of binding affinities [29]. Using experimental data from
the Immune Epitope Database and Analysis Resource (IEDB) [30], Bui et al. computed 85
matrices for class | MHC alleles and 13 matrices for class I| MHC alleles. The ARB matrices
were used to model the MHC class | pathway for several alleles [31].

High quality predictions for protein and peptide properties may be obtained only with a proper
encoding of the amino acids sequence into a series of structural descriptors. As example of
successful amino acids descriptors we mention here the pseudo-amino acid composition indices
[32], which were used to model a wide range of bioinformatics problems, such as classification
of membrane proteins [33], protease classification [34], protein-protein interactions [35], and
protein subcellular location [32]. From the large list of machine learning procedures used in
bioinformatics, we mention here k-nearest neighbors classifier [36], partial least squares [8;
13;18;27], artificial neural networks (ANN) [37-39], support vector machines (SVM) [33;
40;41], and LogitBoost [42]. The combination of several machine learning predictions with
ensemble, jury or fusion methods proved to be a very efficient strategy in order to obtain robust
and predictive models [36;43-45].

Our approach for the prediction of MHC binding affinity is based on five physical-chemical

descriptors E;—Es [1], where each amino acid position in a peptide is encoded by the five
descriptors of the amino acid type at that position. The descriptors capture the physical-

Protein Pept Lett. Author manuscript; available in PMC 2009 February 17.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

lvanciuc and Braun

Page 3

chemical similarity of amino acids, and are able to encode the peptide sequence more efficiently
than previously used representations. Especially our method can still be applied when for
certain peptide positions not all 20 amino acids are present in the training set. Most current
QSAR models for predicting binding affinities of MHC-binding peptides aim for a high
goodness-of-fit criteria in developing the mathematical models. Typically they use the 20
amino acids in a binary code that leads to a large number of variables, 20xn, to encode a peptide
of length n. In many practical applications this number exceeds the available data points used
as the training set for generating the computational model. High-quality predictions of the
MHC-peptide binding affinity depends both on a reliable set of amino acid descriptors and on
the use of predictive machine learning and pattern recognition models.

A large variety of methods have been proposed for the prediction of peptide binding affinity
to MHC molecules: position specific scoring matrices [46;47], ANN [37-39], hidden Makov
models [48;49], SVM [40;41]. In this paper we explore new avenues to find a minimal number
of variables in the mathematical modeling of binding affinities of peptides to MHC molecules.
We previously demonstrated that our descriptors are a suitable mathematical framework to
find sequence similarities between cross-reactive IgE epitopes using a property distance
measure (PD value) [50-55]. We show here that the E1—E5 descriptors and three multivariate
quantitative structure-activity relationships (QSAR) methods (multilinear regression (MLR),
partial least squares (PLS), and multi-layer feed-forward artificial neural networks (ANN), can
be efficiently used to find robust quantitative models of MHC binding, and to explore the
physical-chemical properties that determine the binding interaction between the MHC
molecule and ligand peptides. Our new method is illustrated for the binding affinities (1Csp)
for the class | MHC HLA-A*0201 of a set of 152 nona-peptides [3].

MATERIALS AND METHODS

Data Set

The sequences and binding affinities for class | MHC HLA-A*0201 of 152 nona-peptides
(Table 5) were taken from a recent study in which the 1Csq of these peptides was modeled with
the COMFA and CoMSIA techniques [3]. We have selected the same set of nona-peptides in
order to compare the QSAR value of the E;—Es descriptors [1] with that of well-established
QSAR models CoMFA and CoMSIA.

E;—Es Physical-Chemical Descriptors

Numerous amino acids properties were developed for predicting a wide range of protein
proteins, such as secondary structure, fold type, or subcellular localization. However, these
scales numerically encode similar or related amino acids property, such as hydrophobicity or
polarity. In order to cluster together related numerical scales, the principal components-like
amino acids descriptors E1—Es were developed [1]. Starting from 237 physical-chemical
properties for all 20 naturally occurring amino acids, multidimensional scaling was used to
condense the structural information into five descriptors. The mathematical procedure used in
deriving these five descriptors ensures that the main variations of all 237 properties for the 20
amino acids are reflected by E1—Es. Every position in a nona-peptide was characterized by five
Eq1—E5 descriptors of the corresponding amino acid, giving a vector with 45 components for
each peptide. Similarly with the computation of IgE epitopes sequence similarity index PD
[50;52], each E component was weighted with the square root of the corresponding eigenvalue.

Strategies to Find a Robust MLR Model

Tofind arobust MLR QSAR model of the binding affinities, standard multiple linear regression
methods were then applied by progressively reducing the number of parameters from 45 to 9
in blocks of 9. The model with all 45 components was used as a reference model. Two different
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strategies were tested in this reduction process: (1) a position independent strategy where in
each round 9 descriptors with the lowest absolute correlation coefficient to the 1Csq values
were discarded and (2) a position dependent strategy where we eliminated in each round the
descriptors with the lowest absolute correlation coefficient 1C5q of each position in the nona-
peptide.

The PLS models were computed with Unscrambler (CAMO Inc., Corvalis, OR,
http://www.camo.com), while MLR and ANN models were obtained with in-house developed
C programs.

Artificial Neural Networks

The present study uses multilayer feed-forward neural networks provided with a single hidden
layer. The number of neurons in the hidden layer was selected on the basis of systematic
empirical trials in which ANNs with increasing number of hidden neurons were trained to
predict the experimental plCsg binding affinities. Each network was provided with a bias
neuron connected to all neurons in the hidden and output layers, and with one output neuron
providing the calculated plCsq value.

Activation Functions—The most commonly used activation function in biological
applications of neural networks has a sigmoidal shape and takes values between 0 and 1. For
large negative arguments its value is close to 0, and practice demonstrated that ANN training
is difficult in such conditions. To overcome this deficiency of the sigmoid function, the
hyperbolic tangent (tanh) which takes values between —1 and 1 was used in the present study
for the hidden and output layers.

Preprocessing of the Data—Each component of the input (PLS factors) and output
(p1Csq binding affinities) patterns was linearly scaled between —0.9 and 0.9. For the tanh output
activation function the scaling is required by the range of values of the function, while for the
linear function experiments showed that a linear scaling improves the learning process.

Learning Method—The training of the ANNs was performed with the Polack-Ribiere
method, for 2000 epochs. One epoch corresponds to the presentation of one complete set of
examples. The patterns were presented randomly to the network, and the weights were updated
after the presentation of each pattern. Random values between —0.1 and 0.1 were used as initial
weights.

Performance Indicators—The performances of the neural networks were evaluated both
for the model calibration and prediction. The quality of model calibration is estimated by
comparing the calculated pICsgq during the training phase (pICsgcalc) With the target values
(PICs0exp), While the predictive quality was estimated by a cross-validation method by
comparing the predicted (plCsopr) and experimental values. In order to compare the
performance of the ANN models with the statistical results of the MLR models, we have used
the correlation coefficient r and the standard deviation s of the linear correlation between
experimental and calibration or prediction plCso: pICspexp = A + B-plCsocaic/pr- In Order to
evaluate the effect of random initial weights, each ANN was trained 10 times, and in each case
we obtained the same values for the QSAR statistical indices, at the precision reported in this

paper.
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Cross-Validation

RESULTS

Because the scope of our study is to develop quantitative models that can offer reliable
predictions for the plICsq of nona-peptides not used in the calibration of the QSAR model, we
have estimated the prediction power of the MLR and ANN models with the leave-one-out
(LOO) and leave-10%-out (L10%0) cross-validation methods. The LOO (or the “jackknife
test”) test is a rigorous and objective method to evaluate the accuracy of a statistical prediction
method, as shown in a comprehensive review [56] and in numerous bioinformatics applications
[36;43-45;57]. In the L10%O algorithm 10% of the patterns are selected from the complete
data set and form the prediction set. In the following step the QSAR model is calibrated with
a learning set consisting of the remaining 90% of the data and the neural model obtained in the
calibration phase is used to predict the pICsgg values for the patterns in the prediction set. This
procedure is repeated ten times, until all patterns are selected for prediction once and only once.
In order to compare the QSAR models obtained with MLR, PLS and ANN, we will give the
correlation coefficient and standard deviation between experimental and calculated pICsq for
calibration/training/fitting (rcq and sca)) and for the cross-validation prediction (rre and Spre).
Some QSAR studies, including the CoMFA and CoMSIA models for the class | MHC HLA-
A*0201 binding of the 152 nona-peptides [3], use as prediction parameter the leave-one-out
g2 statistics:

Z(pICSOpr.i - PICS(chp.i)2

1

‘12:1 - 2
Z(pICS()cpri - pICS()mean)

1

In order to compare our E;—Eg MLR and ANN models with the CoOMFA and CoMSIA results,
we will report also the g2 statistics for LOO and L10%O cross-validation experiments.

Linear Regression Model

In the first set of experiments we have used linear regression to evaluate the contribution of
the quantitative descriptors and individual positions in a nona-peptide to the binding affinity.
In Fig. (1) we present the plots of the correlation coefficient r for each E descriptor across the
nona-peptides length. From these plots it is apparent that the structure-activity correlation is
distributed among the five E descriptors and across the nine positions in the ligands. Each
position has a small but significant contribution to the overall binding, with different physical-
chemical properties determining the affinity. The most important descriptors for each position
will be discussed below, when we present our main QSAR model.

Multilinear Regression Model

In order to identify a robust MLR model with good prediction statistics, we have pursued two
strategies, a position independent and a position dependent strategy, as described in the
Methods part. As a reference we used the MLR model with all 45 E;—Eg descriptors (Table
1, model 1), with the following statistics: calibration res = 0.866 and scg) = 0.510, LOO rppe =
0.685 and spre = 0.625, L10%0 rpre = 0.676 and spre = 0.633. In the first position independent
strategy (Table 1, models 2-5) we eliminated in each round 9 descriptors that have the lowest
absolute correlation coefficient with pICsg. The statistical indices for these for MLR models
show that their prediction ability is lower than in the case when all 45 E;—E5 descriptors are
used in an MLR model. However, in the second position dependent strategy, where we kept
for each position the same number of best descriptors, the predictive capability determined by
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Iore, increases to a maximum for model 7 with 27 position best descriptors (rey = 0.825 and
Scal = 0.534, LOO rpre = 0.709 and spre= 0.605, L10%0 rpre= 0.700 and spre= 0.613). This
MLR model with 27 E1—Es has better prediction statistics than the reference model 1 with all
45 E1—E5 descriptors, showing that the eliminated descriptors are not important in modeling
the binding affinity. The plot of experimental vs. calculated plCsg, and experimental vs. L10%
O predicted plCsg obtained with the best MLR model (Table 1, model 7) do not show any
particular clustering of data or regions with abnormal high prediction errors, as can be seen
from Fig. (2).

Neural Network Model

Artificial neural networks form a class of computational models that can explore non-linear
relationships between structural descriptors and biological activities, with many applications
in drug design. The ANN hidden neurons, that have non-linear transfer functions, can model
both the interactions between the input descriptors and the non-linear relationships between
input and output variables. We have used ANN models to investigate the non-linear
relationships between the E;—Es descriptors and plCsg, and the cross-interaction between the
input descriptors. In preliminary tests we have determined that the optimum number of hidden
neurons is two, because a larger number of hidden neurons gives lower prediction statistics.
In Table 2 we give the statistics of the ANN models obtained with the same sets of descriptors
as the MLR models in Table 1. While the fitting (calibration) statistics are better than those of
the corresponding MLR models, the LOO and L10%0O prediction tests show a drastic decrease,
indicating that the neural networks are over-fitted and give less reliable prediction, compared
with those obtained with MLR models. One explanation for the poor prediction performance
of the ANN models is the larger number of parameters for optimization. When all 45 E1-Es
descriptors are used as input for the ANN, each nona-peptide is described by a 45 elements
vector and 45 input neurons are required. For an ANN with 2 hidden neurons and one output
neuron, the number of network connections (parameters to optimize) is (45 +1)x2 + (2 + 1)x1
=95. In this case, the ratio between the number of experimental data and the number of network
connections is too small (p = 152/95 = 1.6), compared to the MLR model (p = 152/46 = 3.3).
Another explanation comes from the nature of the pICsgq data, which are affected by
experimental errors. When these errors are large, the non-linear mapping of the ANN model
gives erroneous predictions. The plot of experimental vs. calculated plCsg, and experimental
vs. L10%0 predicted plCsg obtained with the best ANN model (Table 2, model 7), shown in
Fig. (3), indicate that the neural model is over-fitted, compared with the corresponding MLR
QSAR.

Partial Least Squares Model

Because the physical-chemical information from the 45 E;—E5 descriptors is correlated, we
have used PLS to extract principal components and develop a regression model (Table 3). The
first group of experiments tried to estimate the importance of each individual E descriptor
(Table 3, models 1-5), while in the second group of experiments the descriptors were added
step-wise (Table 3, models 6-9). Based on L10%O cross-validation results, a PLS QSAR with
three principal components gives best predictions, with res= 0.795, S¢a= 0.517, rpe= 0.696,
and spre= 0.616. Both calibration and prediction statistics are slightly lower than those from
the best MLR QSAR (Table 1, model 7), showing that the data compression into PLS
components does not improve the predictive power of the QSAR model.

DISCUSSION

After comparing a wide range of QSAR models (MLR, PLS, and ANN) we found that the
MLR model with 27 E;—Eg descriptors (the best three E;—Eg descriptors for each position in
a nona-peptide, model 7 in Table 1) has the best prediction statistics and the lowest difference
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between calibration and prediction statistics. This shows that the MLR model is more robust
and more predictive than the PLS or ANN QSAR models. It is also of interest to compare the
results from our sequence-based MLR prediction of MHC peptide binding affinities with the
3D-QSAR models for the same dataset [3] but which are more difficult to compute and cannot
be done automatically. The CoMSIA model has calibration r2 = 0.870 and LOO ¢? = 0.542.
Our best MLR model, with LOO g2 = 0.484, is slightly lower in predictive power. However,
the CoMSIA model requires a 3D modeling of all peptides, a computational intensive step that
also requires human assistance, whereas our QSAR model is fast, sequence-based, and can be
easily applied to an automatic screening of large protein databases.

The peptides affinity for the MHC class | HLA-A*0201 may be also predicted with several
servers, such as BIMAS (http://bimas.dcrt.nih.gov/molbio/hla_bind/) [58], SYFPEITHI
(http:/lwww.syfpeithi.de/) [59], and Rankpep
(http://bio.dfci.harvard.edu/Tools/rankpep.html) [47;60]. All 152 nonapeptides from the
dataset were submitted to these three servers, and the predictions are collected in Table 5. Our
aim is to compare the predictions obtained with our MLR QSAR model with those computed
with BIMAS, SYFPEITHI, and Rankpep, and we use the predictions of the MLR model 7
(Table 1) as a benchmark. The predictions obtained with BIMAS, SYFPEITHI, and Rankpep
are compared with the experimental pICsg in Fig. (4). To compare all these methods, a linear
regression was performed between the predicted binding affinity and experimental pICgg
values, and the correlation coefficient is used to evaluate the predictions. We selected this test
because the predictions are not on the same scale with the pICgq values used to develop the
QSAR models. The correlation coefficients for all four predictions are as follows: r = 0.823
for MLR QSAR, r = 0.428 for BIMAS, r = 0.445 for SYFPEITHI, and r = 0.258 for Rankpep.
It is obvious from this comparison that the MLR QSAR model outperforms other algorithms
that predict the peptides affinity for the MHC class | HLA-A*0201.

The MLR QSAR model based on physical chemical descriptors can also provide guidance in
the design of high-affinity peptides, similar as 3D-QSAR models do. The MLR QSAR for the
modeling of the MHC binding affinity (Table 1, model 7) is presented in Table 4. An inspection
of the partial correlation coefficients r and MLR coefficients for individual E descriptors can
offer an insight for the preferences for a particular amino acid type at each of the nine positions
in a nona-peptide.

The negative correlation with E; 1 (mainly correlated with hydrophobicity) favors Ile, Phe and
Val for position 1. Similarly, the negative correlation with E; 1 (mainly correlated with side
chain size) indicates that Arg, Lys, and Glu are favored. The positive correlation with E3 1
indicates a preference for a-helix breaking residues, such as Tyr, Pro, and Trp.

Amino acids with large hydrophobic side chains are preferred for position 2 (E1 » and E; ; have
negative correlations with plCsp). The positive correlation with Es » points out that -strand
breakers (Pro, Glu, Trp) are also favored here.

The statistical results suggest that for this position the binding affinity of the peptides is
enhanced by hydrophobic (negative correlation with E; 3), small side-chain (positive
correlation with E 3; Gly, Pro, or Ser are favored), or a-helix breaking residues (positive
correlation with Ej 3).

Protein Pept Lett. Author manuscript; available in PMC 2009 February 17.
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The binding affinity is increased by polar and charged residues (positive correlation with

E1 4; Asp, Asn, or Lys are favored), -strand breakers (positive correlation with Es 4), and by
residues with high a-helix forming propensity (negative correlation with E3 4; Ala, Glu, or Leu
are favored).

The MLR model indicates that the binding affinity is enhanced by the presence in position 5
of a-helix breaking residues (positive correlation with E; 5), most abundant residues (negative
correlation with E, 5; Lys, Leu, or Arg are favored), or B-strand forming residues (negative
correlation with g5 5; Cys, Arg, or Val are favored).

ICsq for a peptide increases when position 6 is occupied by small side-chain residues (positive
correlation with E ), most abundant residues (negative correlation with E, 5), or a-helix
forming residues (negative correlation with E3 g).

Binding affinity increases when position 7 corresponds to by hydrophobic residues (negative
correlation with E; 7), less abundant residues (positive correlation with E4 7, Cys, Met, or His
are favored), or B-strand breakers (positive correlation with Es 7).

The statistical correlation suggests that peptide binding increases when position 8 is occupied
by polar and charged residues (positive correlation with E; g), a-helix breaking residues
(positive correlation with E3 g), or B-strand breakers (positive correlation with Es g).

The C-terminal residue increases the peptide binding affinity when it corresponds to a small
side-chain residue (positive correlation with E; o), less abundant residue (positive correlation
with E4 g), or to B-strand forming residues (negative correlation with Es g).

CONCLUSIONS

In this paper we presented a successful QSAR application of the amino acids E1—E5 descriptors
[1] for the modeling of the binding affinities of 152 nona-peptides for class | MHC HLA-
A*0201. After a comparative modeling with multiple linear regression, partial least squares,
and artificial neural networks, we found that the MLR model has the highest predictive power.
The predictions of the MLR model are as good as those obtained with CoMSIA [3], and much
better than the predictions of BIMAS, SYFPEITHI, and Rankpep. The MLR QSAR based on
the E1—Es descriptors has several advantages over the COMSIA method, because COMSIA
requires a 3D modeling of all peptides, a computational intensive step that also requires human
assistance. In contrast, the E;—E5 MLR model is sequence-based, fast, and can be easily applied
to an automatic screening of large protein databases.
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Figure 1.

Correlation coefficients between E1—Es and plCsq for each position of the 152 nona-peptides.
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experimental plCsq values.

Protein Pept Lett. Author manuscript; available in PMC 2009 February 17.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

lvanciuc and Braun

9-
et
8 - "t
Py
1%

- . "’. -
:?f oo . 9
5 6 7 8
Expermental piC,,
(a)
Figure 3.

Page 13

o

0
0'.. ’ -
T T T
5 6 7 8

Experimental piC,,
®)

ANN calibration and prediction (leave-10%-out cross-validation) results obtained with 27
E,—E5 descriptors (the best three E1—E5 descriptors for each position in a nona-peptide, model
7 in Table 3). (a) Calibrated versus experimental pIC50 values; (b) Predicted versus

experimental plCsq values.

Protein Pept Lett. Author manuscript; available in PMC 2009 February 17.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

lvanciuc and Braun

Page 14
6000 - 3B q
=
5000 a0 4 B . :..
ese o
- - -e -
4000 4 . o tewmm "
25 4 ¢ e  TREI T K
e &4 me e oman oo
3000 SOt e b B G
t . “d MMMias @
*v, 20 4 ® oo:.. 2 '
2000 4 :‘ .- - -
“ ® - e o
. 15 - -.-o .-
1000 4 & o *%*
s «h - w
= ‘~ o -
O-M—c 10 N N N )
5 o 7 8 9 5 6 7 8 9
Exparimental pICg, Experimental pICy,
(a) ®)
120 +
4 .
100 & : .. .
w‘ ” o o q .". (r..
. - t .‘0.0‘0
60 - L ¥ Ty (-
- o 1 «* 3
l o9 “\' a *
40 1 DR LS
et - - 3
e v ™ %
20 4 '. . .
N
20 l‘ T T 1
5 6 7 8 9
Experimental pIC,,
@
Figure 4.

Comparison between experimental plCsg and predictions with three servers: (a) BIMAS, (b)
SYFPEITHI, and (c) Rankpep.
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