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Abstract 
 

Pharmacognosical analysis of medicinal herbs remain challenging issues for analytical 

chemists, as herbs are a complicated system of mixtures. Analytical separation techniques for 

example high performance liquid chromatography (HPLC), gas chromatography (GC) and 

mass spectrometry (MS) were among the most popular methods of choice used for quality 

control of raw material and finished herbal product. The application of infrared (IR) 

spectroscopy in herbal analysis is still very limited compared to its applications in other areas 

(food and beverage industry, microbiology, pharmaceutical etc). This article attempts to 

expand the use of FTIR spectroscopy and at the same time creating interest among 

prospective researcher in herbal analysis. A case study was conducted by incorporating 

appropriate chemometric methods (Principal Components Analysis, PCA and Soft 

Independent Modelling of Class Analogy, SIMCA) as tools for extracting relevant chemical 

information from the obtained infrared data. The developed method can be used as a quality 

control tool for rapid authentication from a wide variety of herbal samples.  

 

Keywords: Herbal analysis; FTIR spectroscopy; Chemometrics; Principal Components 

Analysis; Soft Independent Modelling of Class Analogy 

 
 

“Assessment herbal medicines by chemometrics-assisted FTIR spectra " send to Journal Of 
Analytica Chimica Acta by January 2004.  

 



1.  Introduction 
 

Unlike synthetic drugs, herbal medicine is a complicated system of mixtures. Thus, the 

methods of choice for identification of ‘botanical drug’ are mainly intended to obtain a 

characteristic fingerprint of a specific plant that represent the presence of a particular quality 

defining chemical constituents. For such purposes, chromatographic techniques such as high 

performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography 

– mass spectrometry (GC-MS) and thin layer chromatography (TLC) were used widely as 

reported in numerous publications [1-3].  

Initially, the use of infrared (IR) spectroscopical method is restricted only for structural 

elucidation of isolated compounds from the herbal matrices. It is also found useful in 

phytochemical studies as a ‘fingerprinting’ devices, for comparing a natural with synthetic 

sample [4]. Due to the inherent complexity of the IR spectrum, the actual interpretation may 

be difficult and the operation require much experience. Indeed, slight differences in the 

spectra within the same plant species may not be obvious and generally not visible to the 

naked eye. Thus, the application of IR spectroscopy in herbal analysis is still very limited 

compared to its applications in other areas (food and beverage industry, microbiology, 

pharmaceutical etc).  

With the advance of computer technology, chemometric methods has become a leading 

tool among the scientific communities towards faster analysis results and shorter product 

development time [5]. Among others, an unsupervised pattern recognition technique such as 

Principal Components Analysis (PCA) is the most often used method for handling 

multivariate data without prior knowledge about the studied samples [6]. While the 

supervised classification procedure using Soft Independent Modelling of Class Analogy 

(SIMCA) based on making a PCA model to assign unknown samples into the predefine class 

model has also been applied to the analysis of infrared spectra [7].  

This study aim to extending the used of FTIR transmission spectroscopy associated with 

the appropriate chemometric methods (PCA and SIMCA) to classify Orthosiphon stamineus 

Benth. (well known as Java Tea for treating infection of the urinary tract, kidney and bladder 

stones disease [8]) based on its geographical origin and varieties from the obtained 

characteristic infrared spectrum. Besides, the potential relationship between the complex 

chemical constituent, geographical origin and varieties of the samples were also studied.  

 

 



Natural product including plants undergoes natural variation. The quality of samples from 

different localities and growing conditions based on their geographical origin may vary. 

Thus, the identification of crude herbs based on geographical origins is crucial in order to 

ensure authenticity, quality, safety and efficacy of the raw material before it is converted to 

the final product. Herbal product manufacturer always seeking for a faster and cost effective 

verification method since the traditional wet chemistry analysis are too laborious and time 

consuming. The authors undertook this effort to introduce and developing a rapid quality 

verification method with the integration of statistical and mathematical modeling for 

extracting relevant information base on the infrared spectroscopy data [9]. To our knowledge, 

this is the first attempt to incorporate Fourier Transform Infrared (FTIR) Spectroscopy 

analysis with chemometric techniques for herbal analysis. 

 
 
2.  Experimental 
 
2.1  Materials and Methods 

Dried leaves of samples from ten different geographical origins consisting of two 

varieties (white and purple flowers) were collected from the respective distributors in 

Malaysia and Indonesia. The samples were named using alphabetical codes as shown in 

Table 1.  

An amount of dried leave samples were milled until fine powder and were filtrated with 

sieves 0.071 and 0.500 mm mesh size.  KBr of spectroscopy grade were also filtrated with 

sieves 0.071mm mesh size. 2 mg samples were mixed uniformly with 100 mg KBr (2% w/w) 

and homogenized by using stir vortex CENCO 34 (Breda, Netherlands). 

 The FTIR spectra were recorded in the mid-IR region 4000 – 400 cm-1 at resolution               

4 cm-1 with 16 scans using Thermo Nicolet FTIR Nexus spectrometer coupled with DTGS 

(deuterated tri-glycine sulphate) detector. The interferometer and the detector chamber were 

purged with dry nitrogen to remove spectral interference due to atmospheric carbon dioxide 

and water vapor. Air background spectrum was recorded before each sample and all 

experiment were performed in six triplicates (six pellets KBr with three scan each). 

 

2.2 Data Preprocessing 

Prior to data analysis, each spectrum was baseline corrected and the absorbance was 

normalized so that peak absorbance of the most intense band is set to unity. The spectra were 



transferred via a JCAMP.DX format into the statistical software program                            

The Unscrambler® 8.0 (CAMO, Trondheim, Norway). 

 
2.3  Chemometric Data Analysis 
 
2.3.1  Principal Components Analysis (PCA) 
 

PCA algorithms was used in this study for reducing the high-dimensional spectroscopic 

data by constructing a linear combination of the original variable into a few orthogonal 

principle components which contain most of the variability of the data set. This projection 

method allows (1) visualization of the natural clustering in the data, (2) primary evaluation of 

the between-class similarity and finally (3) finding the reasons behind the observed pattern by 

making correlation with the chemical or physico-chemical properties of the studied samples.   

 

2.3.2  Soft Independent Modelling of Class Analogy (SIMCA)     

In order to test the robustness of this study for classification and discrimination of 

geographical origin and varieties from O. stamineus samples, a popular classification method 

– SIMCA was used to assign unknown samples to its existing classes. There are five steps 

involved to obtain the classification model: (1) construction of separate PCA models for each 

class, (2) determine the optimal number of PCs by validation, (3) fitting the unknown 

samples to each predefine model, provided that the class are distinct enough (4) deciding 

whether the samples belong to the corresponding class by referring to the object-to-model 

distance and leverage (distance of the sample to the model center) and finally (5) validate the 

classification results with statistical test called significance test.   

 
 
3.  Results and Discussion 
 

Beer’s Law assumes that the absorption of light at a given wavelength is due entirely to 

the absorptivity of the constituents in the sample. Therefore, any variations in the spectral due 

to spectrometer and sampling error should be eliminated prior to data analysis. In this study, 

two chemometric pre-processing step namely baseline correction and normalization were 

used. Baseline effects introduced by the spectrometer (eg. detector drift, changing 

environmental condition such as temperature, spectrometer purge and sampling accessories) 

[10] were removed by auto-correcting the spectrum baseline.  On the other hand, 

normalization of the absorbance spectra to the most intense band (hydroxyl group, 3406 cm-1) 



deletes the differences between spectra due to different amounts of sample or pathlength 

variation [11].  

 
3.1  The FTIR Spectra Analysis 
 
3.1.1  Classification of Geographical Origin and Varieties 
 

Referring to Malaysian Herbal Monograph [8], the main chemical constituents of O. 

stamineus are: Flavonoids (mainly methoxylate compounds), Caffeic acid derivatives, 

Diterpene ester, Triterpene saponins and other minor compounds. Each of these compounds 

play an indispensable role in the complicated system of mixture contributing to the efficacy 

and potency due to the synergistic effect contributed from a number of constituents present in 

the herb. Fig. 1. shows the FTIR spectra (4000 – 400 cm-1) of ten different samples origin of 

(a) white flowers and (b) purple flowers varieties.  

The sharp absorption peak at 1600 – 1760 cm-1 are assigned to C=O stretching vibration 

in carbonyl compounds which may be characterized by the presence of high content of 

terpenoids and flavanoids in the complex mixture of O. stamineus. The presence of a narrow 

and sharp peak at ~2925 cm-1 and ~2853 cm-1 was assigned to C-H and C-H (methoxy 

compounds) stretching vibration respectively. The present of diterpenes were further proven 

with the absorption band of hydroxyl (3500 – 3480 cm-1), ester carbonyl (1270 – 1150 cm-1) 

and phenyl (1600, 1420 cm-1) [12].  

By visual recognition, there are no significant difference in the characteristic absorption 

bands but the intensity of certain wavelength do differ from each others especially at the 

fingerprint region (1800 – 800 cm-1).  This interprets the similarity of certain main chemical 

component observed among different O. stamineus sample origin. The presentation of 

spectrum in 3-D [Fig. 2] further enhances the visualization of the variability in the intensity 

absorption bands between the respective origins as discussed earlier.  

Differences between spectra are generally not visible to the naked eyes; it is more 

practical to incorporate statistical method for the aid of interpreting the obtained 

measurement results from spectroscopic analysis. Since the discrimination of different 

geographical origin of herb based on the slight differences among particular absorption bands 

are too subjective and the results may vary between analysts as reported [13]. Hence, we 

report a more reliable method for discrimination of samples origin by incorporating 

chemometric analysis in interpreting the resultant spectra. 

 



3.2  The chemometric analysis 

3.2.1  Classification of geographical origin and varieties 

3.2.1.1  Principal Components Analysis (PCA) 

PCA was carried out using 520 points (normalized absorbance) between the ranges of the 

selected spectral region 1800 – 800 cm-1 as discuss earlier. Out of 18 data set from six 

triplicate measurement of each sample, 12 data set were randomly selected to represent the 

respective samples origin and varieties as shown in Table 1. Natural grouping of O. 

stamineus from ten different geographical origin were visualize in the two-dimensional 

scores plot below [Fig. 3]. The first three principal components (PCs) represent only 61% of 

the total variance (PC1 = 29%, PC2 = 22% and PC3 = 10%). This indicates that these three 

components were not sufficient to provide effective clustering of the samples origin with 

clear separation between the groups.   

The rule of thumb to make a good classification is to make sure that the variation within 

different sample must be greater than the variance between individual samples. Thus, spectral 

reproducibility is important for creating a robust classification model. The systematic 

variation between replicate spectra due to baseline effect are highlighted and removed after 

derivatisation. Generally, the use of spectra derivatives with Savitzky-Golay algorithm as a 

chemometric pre-processing techniques are widely reported in most classification based on 

FTIR spectroscopy [14 - 16]. 

The potential relationship and pattern associate between different O. stamineus samples 

source with regards to its complex mixtures were further investigated by computing a PCA 

based on the first derivative spectral data.  The first three PCs represent almost 90% of the 

total variance in the data set. The first PCs consist 48% of the total variability followed by the 

second PCs with 34% variance and only 8% variance carried by the third PCs. Overall, each 

sample was able to formed distinct cluster in the two dimensional plot [Fig. 4].  Examining 

the space defined by the first and second PCs as shown in Fig. 4 (a), samples from the same 

origin (state) for example Kelantan (group G and L) and Sarawak (group H, I and N) tends to 

groups itself together in the first PCs.  Samples from Penang origin only observed this 

relationship when it is projected onto the third PCs, which contain only 8% of the total data 

variability [Fig. 4 (b)]. From this inherent structure, we can make a sound assumption that the 

composition of complex chemical constituent do vary according to its origin. But, there are 

no significant differences in the complex mixture observed between the different plant 



varieties as sample with purple flower (rectangular shape) form a close cluster with the white 

flower samples (oval shape).  

 This is further shown by taking a closer look at the PCA models in Fig. 5. The first and 

second PCs which contain almost 60% of the data variances separate the four respective 

sample origin into four well define space. A good separation between different samples 

varieties from the sample region, in this case Kelantan and Sarawak only shown in PC3 [Fig. 

5 (b)].  Therefore, the slight differences in the chemical composition between plant varieties 

which is difficult to interpret with our naked eyes, could be easily identified using this 

chemometric treatment of infrared data.  Furthermore, the classification model may be used 

as a standard references for monitoring the batch-to-batch consistency of raw materials 

supplied by the respective supplier.  

 
 
3.2.1.2  Soft Independent Modelling of Class Analogy (SIMCA) 

Following the successful application of PCA techniques in discriminating analyzed 

samples to its geographical origin and varieties accordingly, the ability of the obtained model 

in performing real situation task such as assigning upcoming unknown samples need to be 

further proved using a more sophisticated classification technique. SIMCA classification 

approach was employed for such purpose. The first derivative spectra data sets of each 

sample group were divided randomly into training and testing set containing two thirds (12 

samples) and one third (6 samples) respectively of the total data. PCA model for each class 

were constructed using the optimum number of PCs determined by leverage validation.  

As a result, SIMCA classification based on the predefine PCA model described above 

yield 100% of correct classification for all classes at 5% significance level.  The classification 

results are well displayed in the Cooman’s plot below [Fig. 6]. The plot displays the sample-

to-model distance for each sample to two models, which allow us to visualize how different 

two models are from each other. The newly classified samples (testing set) are displayed in 

green color, while the training set for the two models are displayed in blue and red. By 

referring to Fig. 6 (a), sample Sabah_P and BPPM_P with model distance lower than three 

implies that these two samples are likely to each others in term of their complex chemical 

mixture.  Contrary, the complex chemical constituent of sample USKGSM_P and 

NNPPDM_P are comparable to each other, as the two sample models were separate far away 

from one and another.    

 



4.  Conclusions 
 

The results from this work give evidence that O. stamineus samples from different 

geographical origin and varieties have varied complex chemical mixture. Sample origin 

seems to have more dominant effect to the chemical constituent of the plant compared to 

plant varieties. The good classification model obtained from both PCA and SIMCA further 

proved that classification of samples from various sourcing and varieties is possible with the 

incorporation of chemometric techniques and FTIR spectroscopy. Therefore, the obtain 

classification model may be of great use for quality inspection of raw herbal material on a 

continuous basis as new batches are produced. Chemometrics analysis of spectra data is rapid 

and simple since no chemical treatment of samples are required. 
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Table 1 

The list of O. stamineus samples according to its geographical origin and varieties. 

 
 a Example BLKBPM: BL: distributor; KB: location; P: state; M: country  (M: Malaysia; I: Indonesia); 
P: purple flowers (white flowers if not indicate)  
  b  Information not available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 

(a)                                                                                  (b) 
Fig. 1. The characteristic FTIR spectra of O. stamineus samples  
(a) white flowers and  (b) purple flowers from different origin in the mid-IR range 4000 – 400 cm-1. 
 
 

Codea Location State Group ID 

BLKBPM Bumbung Lima Penang A 
SRKBPM Kepala Batas Penang B 
SZBKAM Bota Kanan Perak C 
MABTRM Bohor Temak Perlis D 
ZARWBM Rawang Selangor E 
STJGCM Jengka Pahang F 
NNPPDM Pasir Puteh Kelantan G 
MSSMSM Semonggok Sarawak H 
USKGSM Kuching Sarawak I 
NHPJI Pulau Jawa Jakarta J 
BPPM_P Balik Pulau Penang K 
NNPPDM_P Pasir Puteh Kelantan L 
SABAH_P -b Sabah M 
USKGSM_P Kuching Sarawak N 
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Fig. 2. 3-D absorbance matrix spectra (1800 – 800 cm-1) of different samples origin. 
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Fig. 3. 2-D scores plot of the first three PCs (a) PC1 = 29% vs PC2 = 22% and  
(b) PC1 = 29% vs PC3 = 10% obtained from PCA of FTIR spectra. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

Fig. 4. 2-D scores plot of the first three PCs (a) PC1 = 48% vs PC2 = 34% and  
(b) PC1 = 48% vs PC3 = 8% obtained from PCA of 2-point first derivative FTIR spectra. 
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Fig. 5. 2-D Scores plot of the first three PCs (a) PC1 = 40% vs PC2 = 20% and  

(b) PC1 = 40% vs PC3 = 10% of different samples varieties from the same sourcing. 
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Fig. 6. Cooman’s plot of sample-to-model distance for (a) Sabah_P vs BPPM_P samples and (b) 
USKGSM_P vs NNPPDM_P samples obtained from SIMCA classification. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


